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Evolution Equations for LeÂvy Stable Processes

V. V. Uchaikin1
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Evolution equations of one-dimensional LeÂvy stable processes are derived in terms
of fractional integrodifferent iation operators, generalizing the Einstein diffusion
equation for the Wiener process, and applicable to the description of
anomalous diffusion.

1. INTRODUCTION

A homogeneous random process X(t; a , b ) with independent increments

is called a LeÂvy stable process if its increments are distributed according to

a LeÂvy stable law (Feller, 1971). We consider the strictly stable processes

obeying the condition

X(t; a , b ) 5
d

t1/ a Y( a , b ), t . 0 (1)

where Y( a , b ) is the standardized strictly stable variable with characteristic

exponent a P (0, 2] and asymmetry b (Zolotarev, 1986). The symbol 5
d

in

Eq. (1) means that both left side and right side have the same distribution.
In terms of distribution densities the relation (1) is expressed as follows:

p(x, t; a , b ) 5 t 2 1/ a g(xt 2 1/ a ; a , b ) (2)

where p and g stand for the probability densities of random variables X and

Y, respectively.

If a 5 2, then the random variable Y (2, 0) is distributed according to

the Gaussian law
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g(x; 2, 0) 5
1

2 ! p
e 2 x2/4

and the process (1) is merely the Wiener process, the distribution density

of which

p(x, t; 2, 0) 5
1

2 ! p t
e 2 x2/4t (3)

satisfies the evolution equation

- p

- t
5

- 2p

- x2 (4)

under the initial condition

p(x, 0; 2, 0) 5 d (x)

Equation (4) is the well-known diffusion equation derived by Einstein for
description of Brownian motion.

Insofar as the Wiener process is a special kind of LeÂvy stable process,

it is natural to seek a generalization of the evolution equation (4) to the whole

family of LeÂvy stable processes. This is the aim of this paper.

2. EVOLUTION EQUATIONS FOR CHARACTERISTIC
FUNCTIONS

Because stable densities, except for the Gauss density ( a 5 2, b 5 0),
the Cauchy density ( a 5 1, b 5 0), and the Smirnov (or LeÂvy) density ( a 5
1/2, b 5 1), are not expressed in terms of elementary functions, we have to

begin with their characteristic functions

w (k, t; a , b ) 5 #
`

2 `

eikxp(x, t; a , b ) dx

expressible in a simple form. There exist several representations of stable

laws; we consider here the two most popular, forms A and C (Zolotarev,
1986). The corresponding characteristic functions have the form

w A(k, t; a , b )

5 H exp{ 2 t ) k ) a [1 2 i b tg( a p /2) sign k]}, a Þ 1, ) b ) # 1

exp{ 2 t ) k ) }, a 5 1, b 5 0
(5)
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and

w C(k, t; a , b ) 5 exp{ 2 t ) k ) a e 2 i b a p /2signk}, ) b ) # min{1, 2/ a 2 1} (6)

When a 5 2 the forms coincide,

w A(k, t; 2, b ) 5 w C(k, t; 2, 0) 5 exp{ 2 t ) k ) 2}

and describe the Wiener process (3). When a 5 1 and b 5 0 the characteris-

tic functions

w A(k, t; 1, 0) 5 w C(k, t; 1, 0) 5 exp{ 2 t ) k ) }
correspond to the Cauchy process,

pA,C(x, t; 1, 0) 5
t

p (t2 1 x2)

If a 5 1/2 and b A 5 b C 5 1, we have the Smirnov process,

pA(x, t; 1/2, 1) 5
t

! 2 p
x 2 3/2 exp H 2

t2

2x J
pC(x, t; 1/2, 1) 5

t

2 ! p
x 2 3/2 exp H 2

t2

4x J
As is readily seen from (5) and (6), the characteristic functions satisfy

the evolution equations

- w A(k, t; a , b )/ - t 5 2 ) k ) a [1 2 i b tg( a p /2) sign k] w A(k, t; a , b ), a Þ 1 (7)

- w A(k, t; 1, 0)/ - t 5 2 ) k ) w A(k, t; 1, 0)

and

- w C(k, t; a , b )/ - t 5 2 ) k ) a e 2 i b a p /2signk w C(k, t; a , b ) (8)

with the initial condition

w A(k, 0; a , b ) 5 w C(k, 0; a , b ) 5 1

3. EVOLUTION EQUATIONS FOR STABLE PROCESSES WITH
a , 1

Equation (7) can be rewritten in the form

1 1 i b tg( a p /2) sign k

) k ) a [1 1 b 2 tg2( a p /2)]

- w A

- t
5 2 w A
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Assuming

d 2 5 [1 1 b 2 tg2( a p /2)] cos( a p /2)

and writing FÃpA for w A [see (A.14)], we get

cos( a p /2) 1 i b sin( a p /2) sign k

) k ) a d 2 FÃ
- pA

- t
5 2 FÃpA

Comparing the left-hand side of this equality with the Fourier transform of

Feller’ s potential (A.17) and inverting the transform, we arrive at the eqiation

M a
a,v

- pA

- t
5 2 pA(x, t; a , b )

or

- pA

- t
5 2 (M a

u,v)
2 1pA(x, t; a , b ) (9)

with

u 5
1 1 b

2 d 2

and

v 5
1 2 b

2 d 2

We use the symbols for fractional integrodifferentiation operator according

to the book of Samko et al. (1993). For the sake of convenience, they are

given in the Appendix.

According to (A.11), the evolution equation (9) can be written in the

following explicit forms:

- pA(x, t; a , b )

- t
5 2

a
A G (1 2 a ) #

`

2 `

1 1 b sign(x 2 j )

) x 2 j ) 1 1 a

3 [pA(x, t; a , b ) 2 pA( j , t; a , b )] d j (10)

and

- pA(x, t; a , b )

- t
5 2

a
A G (1 2 a )

3 #
`

0

[2pA(x, t; a , b ) 2 (1 1 b )pA(x 2 j , t; a , b )

2 (1 2 b )pA(x 1 j , t; a , b )] j 2 1 2 a d j (11)
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where

A 5 [1 1 b 2 tg( a p /2)] 2 1

In the case of a symmetrical process ( b 5 0) the operator on the right-

hand side of (11) coincides with the Riesz derivative (A.9),

- pA(x, t; a , 0)

- t
5 2 D a pA(x, t; a , 0)

When b 5 1 we have the one-sided stable process with the evolution equation

- pA(x, t; a , 1)/ - t 5 2 [cos( a p /2)] 2 1D a
1 pA(x, t, a , 1)

where D a
1 pA is the fractional Marchoud derivative (A.6).

To transform equation (8) for the characteristic function to the corres-

ponding equation for the density pC(x, t; a , b ) we rewrite it in the form

) k ) 2 a (1 2 b ) FÃ
- pC(x, t; a , b )

- t
5 ) k ) a b e 2 i a b p /2signkFÃpC(x, t; a , b )

and use (A.16) and (A.19). As a result we have

I a (1 2 b ) - pC(x, t; a , b )

- t
5 2 D a b

1 pC(x, t; a , b )

or

- pC(x, t; a , b )

- t
5 2 D a (1 2 b ) D a b

1 pC(x, t; a , b ) (12)

In the symmetrical case ( b 5 0)

- pC(x, t; a , 0)

- t
5 2 D a pC(x, t, a , 0)

In the extremely asymmetrical case ( b 5 1), X (t; a , 1) . 0 if a , 1,

and (12) takes the form

- pC(x, t; a , 1)

- t
5 2 D a

0 1 pC(x, t; a , 1) (13)

where D a
0 1 is given by (A.5). Performing the Laplace transformations, we

obtain for

pÄ C( l , t; a , 1) 5 #
`

0

e 2 l xpC(x, t; a , 1) dx
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the equation

- pÄ C( l , t; a , 1)

- t
5 2 l a pÄ C( l , t; a , 1)

Under the initial condition

pÄ C( l , 0; a , 1) 5 1

we obtain

pÄ C( l , t; a , 1) 5 e 2 l a t

4. EVOLUTION EQUATIONS FOR STABLE PROCESSES WITH
a . 1

All the cases considered above concern the domain a , 1. The transition

to the domain a . 1 can be performed with the help of the duality law.
This refers to the relation connecting the strictly stable distribution with

characteristic exponent a and the strictly stable distribution with a 8 5 1/ a .

In terms of stable random variables Y( a , b ) [ YC( a , b ) it says that

a Prob{Y( a , b ) . y} 5 Prob{0 , Y( a 8, b 8) , y 2 a }

where y . 0, a $ 1, a 8 5 l/ a , b 8 5 (1 1 b ) a 2 1 (Zolotarev, 1986).

According to (1), this relation can be rewritten in the form

a Prob{X(t; a , b ) . x} 5 Prob {0 , X(t8; a 8, b 8) , (t8/x) a t}

where t8 is an arbitrary positive number. Considering it as a function of x and

t and passing from probabilities to probability densities, we get the expression

a #
`

x

p(x8, t; a , b ) dx8 5 #
[t8(x,t)/x] a t

0

p(x8, t8(x, t); a 8, b 8) dx8

which after differentiating with respect to x takes the form

p(x, t; a , b ) 5 (t8/x) a [x 2 1 2 ( - t8/ - x)/t8]tp ((t8/x) a t, t8; a 8, b 8)

2 a 2 1 #
(t8/x) a t

0

- p(x8, t8, a 8, b 8)

- t8

- t8(x, t)

- x
dx8 (14)

Equation (14) generalizes the known duality relation for stable distribution

densities (Zolotarev, 1986),

g(x; a , b ) 5 x 2 1 2 a g(x 2 a ; a 8, b 8) (15)

to stable processes. Setting t8 5 t 5 1, we reduce (14) to (15). When t8 does

not depend on x, we have
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p(x, t; a , b ) 5 (t8/x) a (t/x)p((t8/x) a t, t8; a 8, b 8)

If

t8(x, t) 5 x

then

p(x, t; a , b ) 5 2 a 2 1 #
t

0

- p(x8, x; a 8, b 8)

- x
dx8 (16)

Substitution of (2) into the right-hand side of (16) yields

- p(x8, x; a 8, b 8)

- x
5 2 a x 2 a 2 1{g8 (x8x 2 a ; a 8, b 8)x8x 2 a 1 g(x8x 2 a ; a 8, b 8)}

and

#
t

0

- p(x8, x; a 8, b 8)

- x
dx8 5 2 a x 2 1H #

tx 2 a

0

g8(z; a 8, b 8)z dz

1 #
tx 2 a

0

g(z; a 8, b 8) dz J
where g8(z; a 8, b 8) is the derivative of g(z; a 8, b 8) with respect to z. After

computing the first integral on the right-hand side by parts, we obtain

#
t

0

- p(x8, x; a 8, b 8)

- x
dx8 5 2 a x 2 1 2 a tg(tx 2 a , a 8, b 8) 5 2 a x 2 1tp(t, x; a 8, b 8)

(17)

Finally, the following duality relation results from (16) and (17):

xp(x, t; a , b ) 5 tp(t, x; 1/ a , (1 1 b ) a 2 1), a $ 1 (18)

The use of the relation allows us to pass from evolution equations for a ,
1 derived above to the equations for a . 1. We will illustrate this by means

of the following example.
Let us consider the Smirnov process, the density of which p(x, t; 1/2,

1) satisfies (13) with a 5 1/2:

- p(x, t; 1/2,1)

- t
5 2 D1/2

0 1 p(x, t; 1/2, 1)

It obeys as well the equation
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- 2p(x, t; 1/2, 1)

- t2
5

- p(x, t; 1/2, 1)

- x
(19)

The duality relation (18) in this case is of the form

xp(x, t; 2, 0) 5 tp(t, x; 1/2, 1)

Inserting it into (19) and exchanging the variables t % x, we obtain

- [(x/t)p(x, t; 2, 0)]/ - t 5 - 2[(x/t)p(x, t; 2, 0)]/ - x2

Simple calculations

1 -
- t

2
- 2

- x2 2 p(x, t; 2, 0) 5 1 1

t
2 4

-
- (x2) 2 p(x, t; 2, 0) 5 0

lead to the Einstein equation, as was to be shown.

However, evolution equations for the symmetric stable processes X(t;
a , 0) [ X(t; a ) with arbitrary a P (0; 2] can be obtained immediately from

the corresponding equations for characteristic functions and have the form

- p(x, t; a )/ - t 5 2 D a p(x, t; a ), p(x, t; a ) [ p(x, t; a , 0)

which stays valid in the n-dimensional case:

- pn(x, t; a )/ - t 5 2 ( 2 D n)
a /2 pn(x, t; a ), x P Rn

5. CONCLUDING REMARKS

This article has been stimulated by the works of Seshadri and West
(1982), Allegrini et al. (1996), and West et al. (1997), where the evolution

equation is given as follows [Eqs. (2.14), (37), and (53), respectively]:

- p(x, t)

- t
5 const ? #

`

2 `

[1 1 c sign( j 2 x)]
p ( j , t)

) x 2 j ) a 1 1 d j

This equation is evidently incorrect for all positive a because of the explicit
divergence of the integral. Just the presence of the difference p(x, t) 2 p( j , t)
under the integral in the correct equation (10) provides for its convergence

when a , 1.

The correct fractional differential equations for the densities g(x; a , b )

are obtained by Zolotarev (1986), but they differ in form from those given

above because of the use of another kind of fractional derivative. Strictly
speaking, they describe evolution of a complex function containing the stable

density in its real part. This means that each of these equations is a system

of two equations for two functions, of which only one is of interest to us.

The linear nature of both equations allows one to write an equation for each
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of these functions, but only at the cost of complicating the equation. The

approach developed here is free from this difficulty.

The equations derived in this article are applicable to the investigation
of such anomalous diffusion processes as superdiffusion or enhanced diffusion

which arise in some disordered media (Bouchaud and Georges, 1990; Isi-

chenko, 1992).

APPENDIX. FRACTIONAL INTEGRODIFFERENTIAL
OPERATORS

The Riemann±Liouville fractional integrals for a . 0 are

(I a
1 f )(x) 5

1

G ( a ) #
x

2 `

f( j ) d j
(x 2 j )1 2 a (A.1)

(I a
0 1 f )(x) 5

1

G ( a ) #
x

0

f( j ) d j
(x 2 j )1 2 a (A.2)

(I a
2 f )(x) 5

1

G ( a ) #
`

x

f( j ) d j
( j 2 x)1 2 a (A.3)

The Riemann±Liouville fractional derivatives for 0 , a , 1 are

(D a
1 f )(x) 5

1

G (1 2 a )

d

dx #
x

2 `

f( j ) d j
(x 2 j ) a (A.4)

(D a
0 1 f )(x) 5

1

G (1 2 a )

d

dx #
x

0

f( j ) d j
(x 2 j ) a (A.5)

(D a
2 f )(x) 5 2

1

G (1 2 a )

d

dx #
`

x

f( j ) d j
( j 2 x) a

The Marchaud fractional derivatives for 0 , a , 1 are

(D a
1 f )(x) 5

a
G (1 2 a ) #

`

0

f(x) 2 f(x 2 j )

j 1 1 a d j

5
a

G (1 2 a ) #
x

2 `

f(x) 2 f( j )

(x 2 j )1 1 a d j (A.6)

(D a
2 f )(x) 5

a
G (1 2 a ) #

`

0

f(x) 2 f(x 1 j )

j 1 1 a d j (A.7)

The Riesz potential for a . 0, a Þ 1, 3, 5, . . . , is



2386 Uchaikin

(I a f )(x) 5
1

2 cos( a p /2)
[(I a

1 f )(x) 1 (I a
2 f )(x)]

5
1

2 G ( a ) cos( a p /2) #
`

2 `

f( j ) d j
) x 2 j ) 1 2 a (A.8)

where I a
1 and I a

2 are given by (A.1) and (A.3), respectively.

The Riesz derivative for 0 , a , 1 is

D a f [ (I a ) 2 1f

5
a

2 G (1 2 a ) cos( a p /2) #
`

2 `

f (x) 2 f(x 2 j )

) j ) 1 1 a d j

5
a

2 G ( 2 a ) cos( a p /2) #
`

0

2f(x) 2 f(x 2 j ) 2 f(x 1 j )

j 1 1 a d j

5 [2 cos( a p /2)] 2 1 (D a
1 f 1 D a

2 f ) (A.9)

where D a
1 and D a

2 are given by (A.6) and (A.7), respectively.

The Feller potential for 0 , a , 1 is

(M a
u,v f )(x) 5 u(I a

1 f )(x) 1 v (I a
2 f )(x)

5 #
`

2 `

u 1 v 1 (u 2 v) sign(x 2 j )

) x 2 j ) 1 2 a f( j ) d j (A.10)

where u2 1 v2 Þ 0. In particular,

M a
u,v 5 2u cos( a p /2)I a

where I a is given by (A.8).

The inverse Feller potential for 0 , a , 1 is

(M a
u,v)

2 1 f 5
a

2A G (1 2 a ) #
`

2 `

u 1 v 1 (u 2 v) sign(x 2 j )

) x 2 j ) 1 1 a

3 [ f(x) 2 f( j )] d j

5
a

2A G (1 2 a ) #
`

0

[(u 1 v) f(x) 2 uf(x 2 j )

2 vf (x 1 j )] j 2 1 2 a d j (A.11)

where
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A 5 [(u 1 v) cos( a p /2)]2 1 [(u 2 v) sin( a p /2)]2

In particular,

(M a
1,0)

2 1 5 D a
1

(M a
0,1)

2 1 5 D a
2

(M a
u,u)

2 1 f 5 [2u cos( a p /2)] 2 1D a f

where D a is given by (A.9).

The n-dimensional Riesz integrodifferentiation is given by

( 2 D n)
2 a /2 f 5

1

g n( a ) # Rn

f( j ) d j

) x 2 j ) n 2 a (A.12)

where

a . 0, a Þ n, n 1 2, n 1 4, . . .

g n( a ) 5 2 a p n/2 G ( a /2)/ G ((n 2 a )/2)

and by

( 2 D n)
a /2f 5

1

dn, l( a ) # Rn o
l

k 5 0

( 2 1)k 1 l

k 2 f(x 2 k j ) ) j ) 2 n 2 a d j (A.13)

where

a . 0, l 5 [ a ] 1 1

dn, l( a ) 5
p 1 1 n/2

2 a G (1 1 a /2) G ((n 1 a )/2) sin( a p /2) o
l

k 5 0

( 2 1)k 1 l

k 2 k a

In particular, if n 5 1, then

g 1( a ) 5 2 G ( a ) cos( a p /2)

d1,1( a ) 5 2 2 G ( 2 a ) cos( a p /2), a , 1

and the operators (A.12) and (A.13) coincide with (A.8) and (A.9),

respectively.

The Fourier transforms

FÃ
nf [ # Rn

eik? x f(x) dx, FÃ1 [ FÃ (A.14)

are

FÃ(I a
6 f ) 5 ) k ) 2 a exp{ 6 i a ( p /2) sign k}FÃf, 0 , a , 1 (A.15)

FÃ(D a
6 f ) 5 ) k ) a exp{ 7 i a ( p /2) sign k}FÃf, a $ 0 (A.16)
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FÃ(M a
u,v f ) 5 [(u 1 v) cos( a p /2) (A.17)

1 i(u 2 v) sin( a p /2) sign k] ) k ) 2 a FÃf, 0 , a , 1

FÃn(( 2 D n)
a /2f ) 5 ) k ) a FÃn f (A.18)

In particular,

FÃ1(( 2 D 1)
2 a /2f ) [ FÃ1(I

a f ) 5 ) k ) 2 a FÃ1 f (A.19)

The Laplace transforms

LÃf [ #
`

0

e 2 l xf(x) dx

are

LÃ(I a
0 1 f ) 5 l 2 a (LÃf ) (A.20)

LÃ(D a
0 1 f ) 5 l a (LÃf ) (A.21)
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